Skip to contents

This function computes horizon-specific nonconformity scores by performing rolling-origin evaluation with recursive multi-step forecasting. This ensures proper out-of-sample calibration that respects the exchangeability assumption required for valid conformal prediction intervals.

Usage

calibrate_horizon_scores(
  y,
  y_modified,
  max_lag,
  caret_method,
  seasonal,
  K,
  lambda,
  pre_process,
  tune_grid,
  xreg = NULL,
  calibration_horizon,
  n_windows = NULL,
  initial_window = NULL,
  verbose = FALSE
)

Arguments

y

Original time series (untransformed)

y_modified

Transformed time series (Box-Cox if applicable)

max_lag

Maximum lag used in the model

caret_method

The caret method name

seasonal

Logical, whether seasonal terms are used

K

Fourier order for seasonality

lambda

Box-Cox transformation parameter

pre_process

Pre-processing specification

tune_grid

Tuning grid (uses best parameters from initial fit)

xreg

External regressors matrix (optional)

calibration_horizon

Maximum forecast horizon for calibration

n_windows

Number of rolling windows for calibration

initial_window

Initial training window size for calibration

verbose

Logical, print progress

Value

A list with horizon-indexed vectors of sorted absolute errors